学术报告20240921:A computable quantification of multi-mode Gaussian coherence and complete monogamy relation

 文字:  点击:[]

报告题目:A computable quantification of multi-mode Gaussian coherence and complete monogamy relation

报告人:侯晋川 太原理工大学教授、博士生导师

报告人简介:侯晋川,太原理工大学数学学院教授,博士生导师,研究方向为算子理论与算子代数、量子信息理论。曾担任山西师范大学校长,山西省科协主席兼太原理工大学副校长。两次获得山西省科技进步一等奖,两次获得山西省自然科学二等奖。享受国务院特殊津贴,曾获山西省优秀专家、山西省第二届科技功臣、全国做出突出贡献的回国留学人员、全国优秀教师、全国五一劳动奖章、全国先进工作者、山西省特级劳模等荣誉。

报告摘要:We propose a quantification CνGn of n-mode Gaussian coherence. The value of CνGn only depends on the covariance matrices and displacement vectors of continuous-variable states without any optimization procedures, and thus is easily calculated. For n=1, CνGn  is a proper Gaussian coherence measure of single-mode CV system. For ≥ 2, CνGn  is invariant under any permutation of submodes, nonincreasing under any n-mode local incoherent Gaussian channels, vanishes at incoherent Gaussian states, and satisfies the unification condition and the hierarchy condition that a multi-partite quantum correlation measure should obey. Thus CνGn is a multi-partite Gaussian correlation measure, which reveals, though the quantum coherence lives in single-partite systems, that the multi-mode coherence for continuous-variable systems can be regarded as a multi-partite Gaussian correlation between modes, and such multi-partite Gaussian correlation is also a quantum resource. Moreover, we show that CνGn is completely monogamous as a multi-partite Gaussian correlation measure. This means that the n-mode Gaussian coherence subjects to the principles of resource allocation. In addition, CνGn is an upper bound of the geometric-based single-mode Gaussian coherence measure CνGn  by the Bures distance at pure Gaussian states of mode ≤ 2 and can be used to detect coherence in any n-mode Gaussian states more efficiently.

报告时间:2024年9月21日14:30-15:30

报告地点:赛罕校区西院(校本部)学术会议中心2号会议室

欢迎广大师生参加!

内蒙古大学数学科学学院

2024年9月19日

上一篇:学术报告20240921:Reduced minimum mod... 下一篇:教学报告20240912:大学生数学竞赛与一...

关闭

版权所有:内蒙古大学数学科学学院     蒙ICP16002391号-1