姓名:凌敏 |
|
职称:讲师 |
部门:信息与计算科学系 |
研究方向:半变分不等式问题的适定性分析,以及相关数值方法的最优误差估计 |
邮箱:lingmin@imu.edu.cn |
个人简介
教育经历
2022.07--2024.06 北京大学 数学科学学院 博雅博士后 合作导师:胡俊教授
2019.09--2021.04 University of Iowa Visiting Ph.D student
2016.09--2022.06 西安交通大学 数学与统计学院 理学博士 导师:韩渭敏教授
2012.09--2016.06 内蒙古大学 数学科学学院 理学学士
主讲课程
线性代数
科研论著
[1] M. Ling, W. Xiao, and W. Han. Numerical analysis of a history-dependent mixed hemivariational-variational inequality in contact problems, Computers and Mathematics with Applications. 166 (2024), 65-76.
[2] W. Han, M. Ling, and F. Wang. Numerical solution of an H(curl)-elliptic hemivariational inequality, IMA Journal of Numerical Analysis. 43 (2023), 976-1000.
[3] W. Xiao and M. Ling. A priori error estimate of virtual element method for a quasivariational-hemivariational inequality, Communications in Nonlinear Science and Numerical Simulation. 121 (2023), article number 107222.
[4] M. Ling, W. Han, and S. Zeng. A pressure projection stabilized mixed finite element method for a Stokes hemivariational inequality, Journal of Scientific Computing. 92 (2022), article number 13.
[5] M. Ling and W. Han. Minimization principle in study of a Stokes hemivariational inequality, Applied Mathematics Letters. 121 (2021), article number 107401.
[6] M. Ling and W. Han. Well-posedness analysis of a stationary Navier-Stokes hemivariational inequality, Fixed Point Theory and Algorithms for Sciences and Engineering. 2021 (2021), article number 22.
[7] M. Ling, F. Wang, and W. Han. The nonconforming virtual element method for a stationary Stokes hemivariational inequality with slip boundary condition, Journal of Scientific Computing. 85 (2020), article number 56.
[8] F. Wang, M. Ling, W. Han, and F. Jing. Adaptive discontinuous Galerkin methods for solving an incompressible Stokes flow problem with slip boundary condition of frictional type, Journal of Computational and Applied Mathematics. 371 (2020), article number 112700.
科研项目
主持中国博士后科学基金面上资助项目,项目名称:双曲型 Maxwell 混合半变分不等式问题的适定性与数值方法研究 (No. 2022M720262),已结题.