姓名:王震 |
|
职称:教授(博导) |
部门:信息与计算科学系 |
研究方向:机器学习 |
邮箱:wangzhen1882@126.com |
简介
内蒙古察右后旗人,本科、硕士、博士均毕业于吉林大学数学学院,获吉林大学优秀博士毕业生称号,主要研究方向集中于图像处理、深度学习和机器学习中的各种前沿问题,特别是利用最优化理论和工具构建解决此类问题的关键技术。
科研项目
2012-2013,吉林大学研究生创新基金(20121053),已结题;
2015-2017,内蒙古自然科学基金博士基金(2015BS0606),优秀结题;
2019-2020,内蒙古青年科技英才入选者(NJYT-19-B01),已结题;
2019-2022,内蒙古自然科学基金面上基金(2019MS06008),已结题
2020-2021,符号计算与知识工程教育部重点实验室开放基金(93K172020K02)已结题
2016-2018,国家自然科学基金青年基金(11501310),已结题;
2020-2023,国家自然科学基金地区基金(61966024)已结题;
2024-2027,国家自然科学基金地区基金(62366035)
发表论文
[1] Wang Z, et al. Generalization Memorization Machine with Zero Empirical Risk for Classificaiton[J]. Pattern Recognition, 2024, 152, 110469. (SCI一区Top)
[1] Wang Z, et al. Semi-Supervised Fuzzy Clustering with Fuzzy Pairwise Constraints[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(9): 3797-3811. (SCI一区Top)
[2] Wang Z, et al. General plane-based clustering with distribution loss[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 3880-3893. (SCI一区Top)
[3] Wang Z , Chen X , Li C N , et al. Ramp-based Twin Support Vector Clustering[J]. Neural Computing and Applications, 2020, 32(14): 9886-9896. (SCI二区)
[4] Wang Z, Shao Y H, Bai L, et al. Insensitive Stochastic Gradient Twin Support Vector Machines for Large Scale Problems[J]. Information Sciences, 2018, 462: 114-131. (SCI二区Top)
[5] Wang Z, Shao Y H, Bai L, et al. MBLDA: A novel multiple between-class linear discriminant analysis[J]. Information Sciences, 2016, 369: 199-220. (SCI二区Top)
[6] Wang Z, Shao Y H, Bai L, et al. Twin support vector machine for clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2583-2588. (SCI一区Top)
[7] Wang Z, Shao Y H, Wu T R. Proximal parametric-margin support vector classifier and its applications. Neural Computing & Applications, 2014, 24 (3-4): 755-764. (SCI三区)
[8] Wang Z, Shao Y H, Wu T R. A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recognition, 2013, 46: 2267–2277. (SCI二区)